ENH104V1-350/450 Color TFT-LCD Module Features GENERAL DESCRIPTION

White Electronic Designs Display Systems Division provides optically enhanced solutions to the standard Sharp LQ104V1DG21 color active matrix LCD module. The first enhancement is an index matching (IM) film lamination to the front surface of the display polarizer. The IM film is available in two surface treatments - IM/Clear and IM/110 (a 10\% diffusion). The second enhancement is the incorporation of an enhanced light guide (ELG) providing for up to 30% increase in brightness.

This module is composed of a color TFT-LCD panel, driver ICs, and a backlight unit. Graphics and text can be displayed on a $640 \times 3 \times 480$ dot panel with 262 , 144 color by supplying 18 -bit data signal (6bit/color), four timing signals, $+3.3 \mathrm{~V} /+5 \mathrm{~V}$ DC supply voltage for TFT-LCD panel driving and supply voltage for backlight.

The TFT-LCD panel used for this module is a low-reflection and higher-color-saturation type. Therefore, this module is also suitable for multimedia use. Optimum viewing direction is 6 o'clock. Backlight-driving DC/AC inverter is not built in this module.

White assumes no responsibility for any damage resulting from the use of the device which does not comply with the instructions and the precautions specified in these specification sheets. White does assume the responsibility for the warranty of the enhanced product.

SPECIFICATIONS

Parameter	Specifications
Display size (cm)	$26\left(10.4^{\prime \prime}\right)$ Diagonal
Active area (mm)	$211.2(\mathrm{H}) \times 158.4(\mathrm{~V})$
Pixel format	$640(\mathrm{H}) \times 480(\mathrm{~V})$
	$(1=\mathrm{R}+\mathrm{G}+\mathrm{B} \mathrm{dots})$
Pixel pitch (mm)	$0.330(\mathrm{H}) \times 0.330(\mathrm{~V})$
Pixel configuration	R,G,B vertical stripe
Display mode	Normally white
Unit outline dimensions (1) (mm)	$265.0(\mathrm{~W}) \times 195.0(\mathrm{H}) \times 11.5 \mathrm{max}(\mathrm{D})$
Mass (g)	$700(\mathrm{max})$
Surface treatment	$\mathrm{IM} / C l e a r ~(g l o s s y) ~ o r ~ I M / 110 ~ a n d ~ h a r d c o a t ~ 3 H ~$
Note:	

1. Excluding backlight cables. Outline dimensions shown in Fig. 1
[^0]White Electronic Designs Corp. reserves the right to change products or specifications without notice.

White Electronic Designs

INPUT TERMINALS
TTL-LCD Panel Driving

CN1 pin arrangement from module surface (Transparent view)

Pin No.	Symbol	Function	Remarks
1	GND	-	-
2	CK	Clock signal for sampling each data signal	-
3	Hsync	Horizontal synchronous signal	(1)
4	$V_{\text {Sync }}$	Vertical synchronous signal	(1)
5	GND	-	-
6	R0	RED data signal (LSB)	-
7	R1	RED data signal	-
8	R2	RED data signal	-
9	R3	RED data signal	-
10	R4	RED data signal	-
11	R5	RED data signal (MSB)	-
12	GND	-	-
13	G0	GREEN data signal (LSB)	-
14	G1	GREEN data signal	-
15	G2	GREEN data signal	-
16	G3	GREEN data signal	-
17	G4	GREEN data signal	-
18	G5	GREEN data signal (MSB)	-
19	GND	-	-
20	B0	BLUE data signal (LSB)	-
21	B1	BLUE data signal	-
22	B2	BLUE data signal	-
23	B3	BLUE data signal	-
24	B4	BLUE data signal	-
25	B5	BLUE data signal (MSB)	-
26	GND	-	-
27	ENAB	Signal to settle the horizontal display position	(2)
28	V cc	+3.3/5.0V power supply	-
29	$\mathrm{V}_{\text {cc }}$	+3.3/5.0V power supply	-
30	R/L	Horizontal display mode select signal	(3)
31	U/D	Vertical display mode select signal	(4)

The shielding case is not connected with GND.
Note:

1. 480 line, 400 line or 350 line mode is selected by the polarity combination of both synchronous signals.
2. The horizontal display start timing is settled in accordance with a rising timing of ENAB signal. In case ENAB is fixed "Low", the horizontal start timing is determined as described in Horizontal Display Position, p.6. Don't keep ENAB "High" during operation.

Mode	480 lines	400 lines	350 lines
$H_{\text {SYNC }}$	negative	negative	positive
$V_{\text {SYNC }}$	negative	positive	negative

3.

BHR-03VS-1(JST)
SM02(8.0)B-BHS(JST)

R/L = Low, U/D = Low

R/L = Low, $\mathrm{U} / \mathrm{D}=$ High

BACKLIGHT DRIVING
CN2, CN3
Used connector: Corresponding connector:

Pin No.	Symbol	Function
1	VHIGH	Power supply for lamp (High voltage side)
2	NC	This is electrically opened
3	VLow	Power supply for lamp (Low voltage side)

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Ratings	Unit	Remark
Input voltage	V_{1}	$\mathrm{t}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$-0.3 \sim \mathrm{~V}_{c \mathrm{C}}+0.3$	V	(1)
+5 V Supply voltage	$\mathrm{V}_{c \mathrm{C}}$	$\mathrm{t}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$0 \sim+6$	V	-
Storage temperature	$\mathrm{t}_{\mathrm{T} T \mathrm{C}}$	-	$-30 \sim+70$	${ }^{\circ} \mathrm{C}$	(2)
Operating temperature (Ambient)	Topa	-	$0 \sim+65$	${ }^{\circ} \mathrm{C}$	

Notes:

1. $\mathrm{CK}, \mathrm{RO} \sim \mathrm{R5}, \mathrm{G} 0 \sim \mathrm{G5}, \mathrm{~B} 0^{\circ} \mathrm{B} 5$, Hsrnc, Vsync, ENAB, R/L, U/L
2. Humidity: 95% RH Max. at $\mathrm{t}_{A} \leq 40^{\circ} \mathrm{C}$

Maximum wet-bulb temperature at $39^{\circ} \mathrm{C}$ or less at $t_{A} \leq 40^{\circ} \mathrm{C}$
No condensation.

ELECTRICAL CHARACTERISTICS

TFT-LCD PANEL DRIVING, $\mathrm{tA}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Parameter		Symbol	MIN	TYP		MAX	Unit	Remarks
Power Supply	Supply voltage	Vcc	+3.0	+3.3	-5.0	+5.5	V	(1)
	Current dissipation	Icc	-	(180)		$t_{B D}$	V	$\mathrm{V}_{\text {cC }}=3.3 \mathrm{~V}(2)$
		Icc	-	(150)		$t_{B D}$	mA	$\mathrm{V}_{\text {cc }}=3.3 \mathrm{~V}$ (2)
Permissive input ripple voltage		$V_{\text {RF }}$	-	-		100	mVp -p	
Input voltage (Low)		$\mathrm{V}_{\text {IL }}$	-			0.3 V cc	V	(3)
Input voltage (High)		$\mathrm{V}_{\text {H }}$	0.7 V cc			-	V	
Input current (Low)		loL1	-			1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{l}}=0 \mathrm{~V}(4)$
		loL2	-			60.0	$\mu \mathrm{A}$	$\mathrm{V}=0 \mathrm{~V}$ (5)
Input current (High)		loh1	-			1.0	$\mu \mathrm{A}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{cc}}(6)$
		Іон2	-			60.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{cc}}(7)$

Notes

1. Vcc-turn-on conditions
$\mathrm{t} 1 \leq 15 \mathrm{~ms}$
$0<\mathrm{t} 2 \leq 100 \mathrm{~ms}$
$0<\mathrm{t} 3<1$ s
t4>200ms
$\mathrm{V}_{c c}$-dip conditions
2. $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{cc}}<3.0 \mathrm{~V}$ $\mathrm{td} \leq 10 \mathrm{~ms}$
3. $\mathrm{V}_{\mathrm{cc}} \leq 2.5 \mathrm{~V}$
$V_{c c}$-dip conditions should also follow the $\mathrm{V}_{\text {cc-turn-on }}$ conditions
Typical current situation: 16-gray-bar pattern
480 line mode/Vcc=+3.3V
CK,R0~R5,G0~G5,B0~B5,Hsrvc,Vsync,ENAB,R/L,U/D
CK,R0~R5,G0~G5,B0~B5,Hsysc, Vsywc,ENAB
R/L
CK,RO~R5,G0~G5,B0~B5, Hsync, Vsync
ENAB,U/D

BACKLIGHT DRIVING SECTION

The backlight system is an edge-lighting type with single CCFT (Cold Cathode Fluorescent Tube).
The characteristics of a single lamp are shown in the folliowing table..
$\mathrm{t}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	MIN	TYP	MAX	Unit	Remark
Lamp current	IL	2.0	6.0	6.5	mArms	(1)
Lamp power consumption	PL	-	3.0	-	W	(2)
Lamp frequency	FL	20	35	60	KHz	(3)
Kickoff voltage	Vs	-	-	(950)	Vrms	$t_{A}=25^{\circ} \mathrm{C}$
		-	-	(1250)	Vrms	$t_{A}=0^{\circ} \mathrm{C}(4)$
		-	-	(1500)	Vrms	$t_{A}=-10^{\circ} \mathrm{C}(4)$
Lamp life time	LL	50000	-	-	hour	(5)

Notes:

1. Lamp current is measured with current meter for high frequency as shown above.
2. At the condition of $\mathrm{L}_{\mathrm{L}}=6.0 \mathrm{mArms}$
3. Lamp frequency may produce interference with horizontal synchronous frequency,and this may cause horizontal beat on the display. Therefore, lamp frequency shall be detached as much as possible from the horizontal synchronous frequency and from the harmonics of horizontal synchronous to avoid interference.
4. The open output voltage of the inverter shall be maintained for more than 1 sec ; otherwise the lamp may not be turned on.
5. Since lamp is consumables, the life time written above is referential value and it is not guaranteed in this specification sheet by White.

Lamp life time is defined that it applied either (1) or (2) under this condition (Continuous turning on at $t_{A}=25^{\circ} \mathrm{C}$, $\mathrm{IL}=6.0 \mathrm{mArms}$)

1. Brightness becomes 50% of the original value under standard condition.
2. Kick-off voltage at $t_{A}=10^{\circ} \mathrm{C}$ exceeds maximum value, 1500 Vrms . In case of operating under lower temp environment, the lamp degradation is accelerated and the brightness becomes lower
(Continuous operating for a minimum of one month under lower temp condition may reduce the brightness to 50% of the original brightness.) In case of such usage under lower temp environment, periodical lamp exchange by White is recommended
3. The performance of the backlight, for example life time; or brightness, is extremely infuenced by the characteristics of the DC-AC inverter, make certain that poor lighting caused by the mismatch of the backlight and the inverter (miss-lighting, flicker, ect.) do not occur. Once this is verified, the module should be operating in the same condition as it is installed in the instrument.
4. It is required to have the inverter designed to allow the impedance deviation of the two CCFT lamps and the capacity deviation of barast capacitor.

White Electronic Designs

TIMING CHARACTERISTICS OF INPUT SIGNALS
Timing diagrams of input signal are shown in Fig. 2 - (1)~(3).
TIMING CHARACTERISTICS

Parameter Clock		Symbol	Mode	Min.	Typ.	Max.	Unit
Clock	Frequency	1/Tc	all	-	25.18	28.33	MHz
	High Time	Tch	all	5	-	-	ns
	Low Time	Tcl	all	10	-	-	ns
Data	Set up time	Tds	all	5	-	-	ns
	Hold time	Tdh	all	10	-	-	ns
Horizontal sync. signal	Cycle	TH	all	30.00	31.78	-	$\mu \mathrm{s}$
			all	750	800	900	clock
	Pulse width	THp	all	2	96	200	clock
Vertical sync. signal	Cycle	TV	480	515	525	560	line
			400	446	449	480	line
			350	447	449	510	line
	Pulse width	TVp	all	1	-	34	line
Horizontal display period		THd	all	640	640	640	clock
Hsync-Clock phase difference		THc	all	10	-	Tc-10	ns
$H_{\text {sync.-V }}$-Vrnc. phase difference		TVh	all	0	-	TH-THp	clock

Notes:

1. In case of lower frequency, deterioration of the display quality, flicker, etc. may occur.

HORIZONTAL DISPLAY POSITION

The horizontal display position is determined by ENAB signal and the input data corresponding to the rising edge ENAB signal is displayed at the left end of the active area.

Parameter		Symbol	MIN	TYP	MAX	Unit
Enable signal	Set-up time	Tes	5	-	Tc-10	ns
	Pulse width	Tep	2	640	640	clock
Hsync-enable signal phase difference 2		THe	44	-	TH-664	clock

Notes:

1. When ENAB is fixed at "Low", the display starts from the data of C 104 (clock) as shown in Fig. 2 - (1)~(3). Be careful the module does not work when ENAB is fixed "High". When the phase difference is below 104 clock, keep the High level of ENAB signal longer than 104-The. If it is not kept, the display starts from the data of C104 (clock).

White Electronic Designs
Display Systems Division

VERTICAL DISPLAY POSITION

The vertical display position is automatically centered in the active area at each mode of VGA, 480-,400-,and 350 -line mode. Each mode is selected depending on the polarity of the synchronous signals described in on page 2 Input Terminals, Note 1.

In each mode, the data of TVn is displayed at the top line of the active area. The display position will be centered
on the screen like the following figure when the period of vertical synchronous signal, TV, is typical value.
In 400-, and 350 -line mode, the data in the vertical data invalid period is also displayed. So, inputting all data " 0 " is recommended during vertical data invalid period.
ENAB signal has no relation to the vertical display position.

Mode	V-data start (TVs)	V-data Perioc (TVd)	V-display Start (TVn)	V-display Period	Unit
480	34	480	34	480	line
400	34	400	$443-T V$	480	line
350	61	350	$445-T V$	480	lute

400 lines mode (TV=449)

INPUT DATA SIGNALS AND DISPLAY POSITION ON THE SCREEN
Display position of input data (480 lines mode) (H, V)

White Electronic Designs
ENH104V1-350/450
Display Systems Division

INPUT SIGNALS, BASIC DISPLAY COLORS AND GRAY SCALE OF EACH COLOR

	Colors \& Grayscale	Data signal																		
		Gray Scale	R0	R1	R2	R3	R4	R5	G0	G1	G2	G3	G4	G5	B0	B1	B2	B3	B4	B5
$\begin{aligned} & \text { 흥 } \\ & \text { O} \\ & \text { 응 } \\ & 0 \end{aligned}$	Black	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	-	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
	Green	-	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Cyan	-	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Red	-	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Magenta	-	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	-	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	\uparrow	GS1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Darker	GS2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	\uparrow	\downarrow																		
	\downarrow	\downarrow																		
	Brighter	GS61	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	\downarrow	GS62	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red	GS63	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	\uparrow	GS1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
	Darker	GS2	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
	\uparrow	\downarrow																		
	\downarrow	\downarrow																		
	Brighter	GS61	0	0	0	0	0	0	1	0	1	1	1	1	0	0	0	0	0	0
	,	GS62	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0
	Green	GS63	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Black	GSO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		GS1	0	0	0	0	0	0	0	0	0	0	0	0	1		0	0	0	0
		GS2	0	0	0	0	0	0	0	,	0	0	0	0	0	1	0	0	0	0
		\downarrow	\downarrow						\downarrow						\downarrow					
		\downarrow	\downarrow						\downarrow						-					
		GS61	0	0	0	0	0	0	0	0	0	0	0	0	1	0	11		11	
		GS62	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1
	Blue	GS63	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

Notes:

1. 0 : Low level voltage 1: High level voltage
2. Each basic color can be displayed in 64 gray scales from 6 bit data signals. According to the combination of total 18 bit data signals, the 262, 144-color display can be achieved on the screen.

OPTICAL CHARACTERISTICS
$\mathrm{t}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=+5 \mathrm{~V}$

Parameter		Symbol	Condition	Min	Typ	Max	Unit	Remarks	
Viewing Angle Range	Horizontal	ө21, $\theta 22$	$(C R \geq 10)$	60	70	-	Deg.	$(1,4)$	
	Vertical	$\theta 11$		35	40	-	Deg.		
		$\theta 12$		55	70	-	Deg.		
Contrast Ratio		CR	$\theta=0^{\circ}$	150	-	-	-	$(2,4)$	
		Best Viewing Angle	-	250	-	-	$(2,4)$		
Response Time	Rise		tr	$\theta=0^{\circ}$	-	20	-	ms	$(3,4)$
	Decay	td	-		40	-	ms		
Luminance of White		Y	280		350	-	$\mathrm{cd} / \mathrm{m}^{2}$	$\begin{gathered} \text { (4) } \\ \mathrm{IL}=6.0 \mathrm{mArms} \\ \mathrm{f}=35 \mathrm{kHz} \end{gathered}$	
		360	450		-	$\mathrm{cd} / \mathrm{m}^{2}$			
Chromaticity of White			x		-	0.313	-		-
		y	-		0.329	-	-		
White Uniformity		ठw	-		-	1.45	-	(5)	
Viewing Angle Range as a Brightness Definition	Horizontal	ө21, $\theta 22$	50\% of the maximum brightness	-	50	-	Deg.	(1)	
	Vertical	$\theta 11$		-	40	-	Deg.		
		$\theta 12$		-	35	-	Deg.		

The measurements shall be executed 30 minutes after lighting at rating. (typical condition: $1 \mathrm{l}=6 \mathrm{mArms}$)
The optical characteristics shall be measured in a dark room or equivalent state with the method shown in Fig. 3 below.

Fig. 3 Optical characteristics measurement method

Notes:

1. Definition of viewing angle range:
2. Definition of contrast ratio

The contrast ratio is defined as follows:
Contrast Ratio (CR) $=\frac{\text { Luminance (brightness) with all pixels white }}{\text { Luminance (brightness) with all pixels black }}$
3. Definition of response time

The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white".
4. This shall be measured at the center of the screen.
5. Definition of white uniformity:

White uniformity is defined as the following with five measurements. (A~E).

[^1]

DISPLAY QUALITY

The display quality of the color TFT-LCD module shall be in compliance with the Incoming Inspection Standard.

HANDLING PRECAUTIONS

1. Be sure to turn off the power supply when inserting or disconnecting the cable.
2. Design the cabinet so that the module can be installed without any extra stress such as warp or twist.
3. Since the front polarizer is easily damaged, pay attention not to scratch it
4. Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
5. When the panel surface is soiled, use an absorbent cotton or other soft cloth to wipe it off.
6. Since the panel is made of glass and refined wires and components, it may break,crack or internal wire breaking if dropped or bumped on hard surface. Handle with care.
7. Since CMOS LSI is used in this module, take care of static electricity and injure the human earth when handling.
8. Laminated film is attached to the front and back of the module surface to prevent it from being scratched. Peel the film off slowly, just before use, with strict attention to electrostatic charges, Ionized air should be blown over during the action. Blow off 'dust' on the polarizer by using an ionized nitrogen gun, etc.
9. The polarizer surface on the panel is treated with AntiGlare for low reflection.
10. Do not expose the LCD panel to direct sunlight. Lightproof shade etc. should be attached when LCD panel is used under such environment.
11. Connect GND to 4 place of mounting holes to stabilize against EMI and external noise
12. The high voltage portions on the backlight are very dangerous. Careless handling may lead to electrical shock. When exchanging lamps or service, turn off the power without fail.
13. When handling LCD modules and assembling then into cabinets, be aware that long-term storage in the environment of oxidization or deoxidization gas and the use of such materials as reagent, solvent, adhesive, resin, etc. which generate these gasses, may cause corrosion and discoloration of the LCD modules.
14. Cold cathode flourescent lamp in LCD panel contains a small amount of mercury, follow local ordinances or regulations for disposal.

PACKING FORM

1. Piling number of cartons: MAX 7
2. Package quantity in one carton: 20
3. Carton size: $525(\mathrm{~W}) \times 309(\mathrm{D}) \times 377(\mathrm{H})$
4. Total mass of 1 carton filled with full modules : 17.5 kg

OTHERS

1. Disassembling the module can cause permanent damage and should be avoided.
2. Be adviced that image retention may occur when a fixed pattern is displayed for a long period of time.

RELIABILITY TEST ITEMS

No.	Test items	Conditions	240 h
1	High temperature storage test	$\mathrm{t}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	240 h
2	Low temperature storage test	$\mathrm{t}_{\mathrm{A}}=-30^{\circ} \mathrm{C}$	240 h
3	High temperature and high humidity operating test	$\mathrm{t}_{\mathrm{A}}=40^{\circ} \mathrm{C}, 95 \% \mathrm{RH}$ (No condensation)	240 h
4	High temperature operating test	$\mathrm{t}_{\mathrm{A}}=65^{\circ} \mathrm{C}$	240 h
5	Low temperature operating test	$\mathrm{t}_{\mathrm{A}}=-10^{\circ} \mathrm{C}$	$: 10 \sim 57 \mathrm{~Hz} / \mathrm{Vibration}$ width (one side): 0.075 mm
6	Vibration Test (Non-operating)	Frequency Sweep time Test Period	$: 11$ minutes $: 3$ hours (1 hour for each direction of $X, Y, \mathrm{Z})$
7	Shock test (non-operating) Pulse width Direction	$: 490 \mathrm{~m} / \mathrm{s}^{2}$ $: 11$ minutes, half sine wave $: \pm \mathrm{X}, \pm \mathrm{Y}, \pm Z$ (once for each direction.)	

White Electronic Designs Corp. reserves the right to change products or specifications without notice. Original specifications created by Sharp.

[^2] Rev. 0

[^0]: Note: This measurement is typical, and see Fig. 3 for details.

[^1]: $\delta w=\frac{\text { Maximum Luminance of five points (brightness) }}{\text { Minimum Luminance of five points (brightness) }}$

[^2]: September $2003 \quad 14$ Display Systems Division • Hillsboro, OR • (503) 690-2460 • www.wedc.com

